
Video Summarization using Crowdsourced Causality Graphs

Shay Sheinfeld
The Interdisciplinary Center, Israel

Yotam Gingold
George Mason University

Ariel Shamir
The Interdisciplinary Center, Israel

Abstract
Video summarization is useful for many applications such as
content skimming and searching. Automatic video summariza-
tion is extremely challenging as it often depends on semantic
tasks such as determining meaning, causal relationships, and
importance of the displayed video events. We present a reli-
able, crowdsourced solution to video summarization based on
human computation that addresses one of the main semantic
challenges in story understanding: recognizing cause and ef-
fect. Our approach first automatically divides the video into
simple shots as atomic elements. Using these elements, we
first construct a context-tree (Verroios and Bernstein 2014) to
gain global understanding, and then introduce a crowdsourced
algorithm that explicitly builds a causality graph representing
the causality relations between events in the video. We use
both importance and causality to create a summary of the orig-
inal video. Our evaluation shows that information from the
causality graph creates better summarizations of the original
video.

Introduction
Video summarization, in which a short version of a long
video is created, is useful for many applications such as con-
tent skimming and searching in video libraries. Although
fully automatic summarization algorithms are highly desired,
they require solutions to many difficult tasks: detecting scene
changes, determining who or what appears in each scene, rec-
ognizing words and actions, and above all assigning meaning,
causal relationships, and importance to the displayed events.
Computer vision algorithms can provide some solutions to
the former tasks, but the latter task is semantic in nature
and is therefore, the most challenging for a fully automatic
algorithm (machine computation).

We present a hybrid automatic (machine) and human com-
putation approach to the problem. Our crowdsourced part
addresses one of the main semantic challenges in story un-
derstanding: recognizing cause and effect. Our approach first
automatically divides the video into simple shots as building
blocks. These shots are converted to textual descriptions us-
ing crowdsourcing while maintaining consistency in naming
characters. We utilize the recent context trees approach of Ver-
roios and Bernstein (2014) to build a context-tree of the shots.
This approach was designed to create global understanding in
tasks where each contributor only has access to local informa-
tion. However, the context-tree does not provide knowledge

about cause and effect. Using importance ranking from the
context tree alone for summarization can exclude events cru-
cial to the video understanding. Using simple crowdsourcing
tasks we hierarchically build an explicit causality graph be-
tween story units of the context tree (Figure 1). This causality
graph is then used for better summarizations of the original
video. Our evaluation shows that compared to a baseline of
using only the context-tree, the information from the causality
graph creates better summarizations of the original video.

Previous work
Extensive work has been done in the field of video abstraction
and summarization. Truong and Venkatesh (2007) conducted
an extensive survey of video abstraction techniques which
produce either a sequence of representative still images or a
shorter video.

Without humans in the loop, automatic approaches are
limited to heuristics for understanding the video contents.
For instance, in a restricted domain such as classroom lec-
tures, the pitch of the speaker (He et al. 1999) or tran-
script text (Shin et al. 2015) can be used. Crowdsourc-
ing had been used to create text summaries of video seg-
ments (Pavel, Hartmann, and Agrawala 2014) as well as
static representations of how-to videos (Kim et al. 2014;
Weir et al. 2015). Bernstein et al. (Bernstein et al. 2011) in-
troduced an approach to find high quality still images in short
videos with parallel crowdsourcing. In contrast, our aim is to
use crowdsouring to shorten fiction videos. Wu et al. (2011)
described a technique which summarizes a movie by asking
each worker to watch the entire movie. Our approach relies
instead on parallel crowdsourcing and introduces the novel
causality graph.

Our causality graphs are closely related to plot graphs
used in the story generation literature. Plot graphs were first
described by Kelso et al. (1993) as a structure for modeling
events in interactive storytelling (Weyhrauch 1997; Young
1999).

Algorithm
In all stages of our algorithm each worker only sees a local
part of the input video. The algorithm distributes all these
local views and combines the results into a global under-
standing of the video’s plot, including the cause and effect



M
ar

im
ba

Input video shots Potentially important shots Causality graph Shot selection Video summary

0 1 2 43

9 8 7

5

61011

12 1413

19 18

1715 16

202122

24

23

29282725 26

30313234 33

9 7

5

611

12

18

17

202122

292825 26

3134

10

33

24

15

0

9 8

5

1011

12 14

19 18

1715 16

202122

24

23

29282725

3134 33

0 1 4

9 7

5

611

12

19 18

17

20212223

292825 26

3134

810

14

27

33

24

15 16

3

9 7

5

611

12

18

17

202122

292825 26

3134

10

33

24

15

Figure 1: The entire Marimba video is automatically decomposed into shots. The importance of each shot is computed by the
crowd via the context tree algorithm (Verroios and Bernstein 2014) (more important shots are darker). Potentially important
shots are used in our crowd-based causality graph construction algorithm that computes causal relationships between the shots
(thicker edges in the causality graph mean higher weight). Finally, important shots and their causal dependencies are selected to
create a video summary.

graph of events in the video, crucial for creating high quality
summaries.

Our algorithm is composed of the following steps. Some of
these steps (namely, 1, 5, 7 and 8) are automatic, and others
(steps 2, 3, 4, 6) use human computation:

1. Shot detection
2. Character naming
3. Creation of textual descriptions for shots
4. Importance scoring using the context tree
5. Filtering of shots
6. Construction of the causality graph
7. Shot selection
8. Video summary creation

Examples of all human computation tasks are provided in the
supplemental materials.

Shot-detection. The first step of our method creates the
building blocks, or smallest units of video, for the various
stages of the algorithm. We assume that the input video is
built from multiple shots that tell a story. Therefore, we chose
to use single shots as the building blocks of our algorithm.
We further constrain the shots to have a minimum length of
4 seconds. We use a region-base histogram comparison to
detect shot boundaries. Every two successive frames are split
into four equal regions, and the HSV histogram of every two
corresponding regions are compared using correlation. If the
average correlation is more than a threshold and the length of
the current segment is more than 4 seconds, a shot boundary
is marked and the video is split.

Description & Naming. Each extracted shot is translated
into a textual representation. This text will be used in the
context tree algorithm as well as the causality graph creation.
We use human computation to translate the shots into text.
As this translation will be performed by different workers,
the names of the characters must be unified such that each
character will be addressed in the same manner. We either use
well know characters (e.g. Popeye) or label each character so
that important characters’ pictures and names are provided
to the worker in the description of the text translation task.

Context-Tree. The context tree algorithm requires that in-
put be divided into small units that are mutually exclusive
and their union is the original input. The units constitute the
leaves of the tree. For example, Verroios and Bernstein (2014)
used their context tree algorithm to summarize a whole book
by splitting the book into paragraphs. Our approach divides
the video into single shots, translated into text.

We use the context tree algorithm to obtain the importance
of each shot. Our context tree construction algorithm follows
the original two phase approach:

1. In the up-phase (from the leaves to the root), workers are
shown b successive nodes at the current level (e.g. shots at
the bottom level) and asked to write a text summary. At
the end of this phase, the root contains a context-less text
summary of the whole input video.

2. In the down-phase (from the root back to the leaves), work-
ers provide context to the text summaries. They are asked
to rate the importance of each inner node for understand-
ing the parent node summary. At the end of this phase, all
leaves have a normalized importance score.

We use a branching factor of b = 3 and a replication
factor of r = 4, which means that every corresponding task
is replicated four times, to be answered by four different
workers.

Scoring & Filtering. The output of the previous context
tree step is a numeric score for every node, including leaf
nodes, which represent individual shots. Hence, the impor-
tance score of each leaf node provides a way to rank the shots.
However, we have found that the relative value of the impor-
tant score, i.e. the value of a shot relative to its neighboring
shots, can also be indicative of the shot’s importance.

Our filtering scheme is based on two importance threshold
parameters. T1 is the threshold for the top rated shots. Any
shot whose importance score is greater than T1 will be con-
sidered as potentially important. T2 = 1

2T1 is the threshold
for local maxima shots. Any shot whose importance score is
greater than T2 and is a local maxima (greater than its imme-
diate neighbors), will also be marked as potentially important.
In the next stage of creating the causality graph, we use only
potentially important shots (see second stage in Figure 1).



Marimba

T
1

T
2

Figure 2: The importance score of every shot in the Marimba
movie as computed by the context tree algorithm. We use
two thresholds: every shot above threshold T1 is marked as
important, as well as local maxima shots above threshold T2

(for example, shot number 31). All other shots are pruned
before the construction of the causality graph.

Causality Graph. A causality graph is a weighted directed
graph. Its nodes are events (shots) from the video. The di-
rected edges represent a causal relationship between two
events in the video: the source event is a direct cause of the
target event. The weight of each edge represents the strength
of the relationship, measured by the evidence found for this
relationship. Although the previous stages provide a way to
determine important events in the movie, there are no connec-
tions between these events and the plot structure is missing.
Our causality graph provides a way to connect these events
in a meaningful manner.

A crowdsourcing algorithm for constructing the causality
graph could ask, for every pair of shots, if one causes the
other. This will yield O(n2) queries, which is resource con-
suming and may also contain incorrect edges, since a worker
cannot correctly identify a causal relationship between two
events without context. To solve this, we build a sequence
of causality graphs whose source nodes are nodes from level
i of the context tree and target nodes are the leaves (i.e. in-
dividual shots). The construction of the causality graph for
level i depends on the causality graph of the previous (higher)
level. The final causality graph will include only leaves. Our
approach reduces the number of queries to O(n log n).

We define a query node as a text leaf node describing one
shot in the movie. Note that the set of query nodes is fixed,
and does not change when passing from one level of the
context tree to the next. We define a causal node as any node
in the context tree that could potentially be a cause of a query
node.

The causality graph for level i, denoted CGi, is a causality
graph whose nodes consist of all the query nodes and the
causal nodes from level i of the pruned context tree. The final
causality graph will consist of only query nodes (i.e. shots)
and edges between them, but along the way we recursively
construct several causality graphs.

The base case of the algorithm constructs CG1, the causal-
ity graph for the level below the root of the tree. Using the
crowd, we find, for each query node, all the possible causal
nodes in the first level of the tree. For a given query node,
we consider only causal nodes whose subtree contains shots

before the query node.
Inductively, the causality graph CGi of level i is a graph

that consists of edges from causal nodes at level i to query
nodes. To construct graph CGi+1, the potential causes
(causal nodes) for query nodes are calculated as follows: Let
v be a node from level i+ 1 of the pruned context tree, p(v)
its parent, and q a query node. We say that v is a potential
cause for q if (p(v), q) is an edge in CGi. While construct-
ing CGi+1, we use the crowd to determine whether each
potential causal node v is actually a direct cause of q or not.

We ask each query d = 5 times. The count c(v, q) of an
edge (v, q) is the number of workers who indicate that v is a
direct cause of q. If the count is 0, we do not create an edge at
all. The weights of the edges in the final causality graph CG
are defined recursively by adding the counts of their parents
(see Figure 1).

Shot Selection. Given a target video summary duration
(or percentage of the input movie duration), our algorithm
first sorts all the un-pruned context tree nodes according to
their importance. We then loop until the target duration is
exceeded, and choose the most important unselected node
q for inclusion in the summary. We also include all shots
v with causality edges that point to q if the causality edge
weight is above a threshold w(v, q) > T3. In our experiments,
we set T3 to be half of the largest edge weight in the graph.
We continue this process until we exceed the desired movie
duration.

Results
We have implemented our algorithm and created video sum-
maries for several movies. We used the Amazon Mechanical
Turk paid crowdsourcing platform. Examples for all tasks
(HITs) can be seen in the supplemental materials, including
payment per task. For all videos, we set the target length at
50%. Our video summaries can be seen in the supplemental
materials, including more drastic summarization of 25%.

Marimba1 is a 7.1 minute long live-action movie with a
moral message. This movie is challenging because seemingly
unimportant events near the beginning of the movie become
important near the end, and the moral message requires global
context. Cupido - Love is blind2 is a 7.4 minute long ani-
mated movie about Cupid and his quest to make two people
fall in love. This movie offers several challenges as it contains
a long-term causality relationship, shots which are difficult
to translate into text with only local information, and vari-
ous artistic rendering styles. Innocence3 is a 5 minute long
live-action movie about a theft. This movie is challenging be-
cause the cause-and-effect of the theft involves characters in
different locations, it includes a change of heart that requires
global context to understand, and the return of the stolen item
is implied but not actually shown.

The goal of our algorithm is to create a summary video
that shortens an input video while still capturing the plot of

1https://www.youtube.com/watch?v=PrXBiZD7a28
2https://www.youtube.com/watch?v=Pe0jFDPHkzo
3https://www.youtube.com/watch?v=B2V8lKgjc9I

https://www.youtube.com/watch?v=PrXBiZD7a28
https://www.youtube.com/watch?v=Pe0jFDPHkzo
https://www.youtube.com/watch?v=B2V8lKgjc9I


the input. To evaluate this, we first compared text summaries
created by subjects who viewed our video summaries to
summaries created by subjects who viewed the entire movie
(ground truth). We showed the original movie and the two
text summaries to raters and asked them to choose the bet-
ter summary. Raters preferred the summaries written by the
entire movie group 49% of the time (23, 31, and 19 votes
for Marimba, Innocence, and Cupido, respectively) and sum-
maries written by the causality graph group 51% of the time
(27, 19, and 31 votes for Marimba, Innocence, and Cupido,
respectively). These differences are not statistically signifi-
cant, and we conclude that text summaries of the unabridged
video and our video summaries are of similar quality.

We also compared our video summaries to video sum-
maries created using only the context tree (baseline). Raters
first watched the entire movie and were asked to write a
text summary of the movie (this was intended to induce
comprehension and, therefore, a thoughtful choice). Finally,
raters watched the two video summaries and indicated which
one they thought was better. Raters preferred the causality
graph summaries 82% of the time (18, 16, and 15 votes for
Marimba, Innocence, and Cupido, respectively) and the con-
text tree summaries 18% of the time (2, 4, and 5 votes for
Marimba, Innocence, and Cupido, respectively). These differ-
ences are statistically significant (p < 0.05), showing a clear
advantage for using causality relations in video summaries.

Conclusion and Future Work
We have presented a human computation algorithm for video
summarization that takes semantics into account and pre-
serves the causality relations of events. Our algorithm takes
advantage of the crowd by splitting the input into mutually
exclusive shots and running tasks in parallel, so that each
task is completed by a different worker with only local infor-
mation. Our approach uses a context tree to provide global
context for isolated and distributed crowd workers and builds
a causality graph to capture causal relationships important for
understanding. Video summaries created with our algorithm
led viewers to similar understanding of the plot as viewers of
the entire, unabridged video. Moreover, our video summaries
were judged to be better than video summaries created with
only information from the context tree.

There are limitations to our method. For one, we work at
the granularity of shots. If one shot is very long and is chosen
for the summary, we do not cut it and it may take up too large
a portion of the summary. In the future, we plan to develop
methods for rating and possibly shortening individual shots.
There are also still possibilities for confusion in the causality
graph for very complicated or repetitive plots.

Other directions for future work are automatic character
identification, with either human or machine computation.
We would also like to scale our algorithm to feature-length
films and adapt it to lecture videos. We also plan to explore
additional applications of the semantic information generated
by our human computation causality graph creation. This
information could be used to create different types of sum-
maries, such as static arrangements (tapestries, storyboards,
or comics). This information could also be used to create
video remixes.

References
[2011] Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger,
D. R. 2011. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In User interface software and
technology (UIST), 33–42. ACM.

[1999] He, L.; Sanocki, E.; Gupta, A.; and Grudin, J. 1999.
Auto-summarization of audio-video presentations. In Multi-
media, 489–498. ACM.

[1993] Kelso, M. T.; Weyhrauch, P.; and Bates, J. 1993. Dra-
matic presence. PRESENCE: Teleoperators & Virtual Envi-
ronments 2(1):1–15.

[2014] Kim, J.; Nguyen, P. T.; Weir, S.; Guo, P. J.; Miller,
R. C.; and Gajos, K. Z. 2014. Crowdsourcing step-by-step
information extraction to enhance existing how-to videos.
In SIGCHI Conference on Human Factors in Computing
Systems, 4017–4026. ACM.

[2014] Pavel, A.; Hartmann, B.; and Agrawala, M. 2014.
Video digests: A browsable, skimmable format for informa-
tional lecture videos. In User interface software and technol-
ogy (UIST), 573–582. ACM.

[2015] Shin, H. V.; Berthouzoz, F.; Li, W.; and Durand, F.
2015. Visual transcripts: Lecture notes from blackboard-style
lecture videos. ACM Trans. Graph. 34(6):240:1–240:10.

[2007] Truong, B. T., and Venkatesh, S. 2007. Video abstrac-
tion: A systematic review and classification. ACM Trans.
Multimedia Comput. Commun. Appl. 3(1).

[2014] Verroios, V., and Bernstein, M. S. 2014. Context
trees: Crowdsourcing global understanding from local views.
In Second AAAI Conference on Human Computation and
Crowdsourcing.

[2015] Weir, S.; Kim, J.; Gajos, K. Z.; and Miller, R. C.
2015. Learnersourcing subgoal labels for how-to videos. In
Computer Supported Cooperative Work & Social Computing
(CSCW), 405–416. ACM.

[1997] Weyhrauch, P. 1997. Guiding Interactive Drama.
Ph.D. Dissertation, Carnegie Mellon University.

[2011] Wu, S.-Y.; Thawonmas, R.; and Chen, K.-T. 2011.
Video summarization via crowdsourcing. In CHI’11 Ex-
tended Abstracts on Human Factors in Computing Systems,
1531–1536. ACM.

[1999] Young, R. M. 1999. Notes on the use of plan structures
in the creation of interactive plot. In AAAI Fall Symposium
on Narrative Intelligence.


	Introduction
	Previous work
	Algorithm
	Results
	Conclusion and Future Work

